ENGINEERING MECHANICS - SEMESTER 1

CBCGS MAY 18

Q1] a) Find fourth force $\left(F_{4}\right)$ completely so as to give the resultant of the system force as shown in figure.

Solution:-
Let F_{4} act as an angle α as shown in the figure.
Given, resultant of forces F_{1}, F_{2}, F_{3} and F_{4} is $\mathrm{R}=150 \mathrm{~N}$

Resolving the forces along Y -axis,
$100 \cos 30-120 \sin 60-250 \cos 25+F_{4} \sin \alpha=-150 \sin 45$
$F_{4} \sin \alpha=-150 \sin 45-100 \cos 30+120 \sin 60+250 \cos 25$
$F_{4} \sin \alpha=137.8314$

Resolving the forces along X -axis,
$-100 \sin 30-120 \cos 60+250 \sin 25+F_{4} \cos \alpha=150 \cos 45$
$F_{4} \cos \alpha=110.4115 \mathrm{~N}$
(2)

OUR CENTERS :

Squaring and adding (1) and (2),
$\left(F_{4} \sin \alpha\right)^{2}+\left(F_{4} \cos \alpha\right)^{2}=(137.8314)^{2}+(110.4115)^{2}$
$F_{4}{ }^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=18997.5052+12190.6887$
$F_{4}{ }^{2}=31188.1939$
$F_{4}=176.6018 \mathrm{~N}$

Dividing (1) by (2), $\frac{F_{4} \sin \alpha}{F_{4} \cos \alpha}=\frac{137.8314}{110.4115}$
$\tan \alpha=1.2483$
$\alpha=51.3031^{\circ}$
Hence,
$F_{4}=176.6018 \mathrm{~N}, \alpha=51.3031^{\circ}$

Q1] b) Determine the magnitude and direction of the smallest force P required to start the wheel $\mathbf{W}=10 \mathrm{~N}$ over the block.

Solution:-
The simplified figure is as shown

Let point C is the tip of rectangle block from figure
$O C=O A=60 \mathrm{~cm}$ \qquad
$A B=15 \mathrm{~cm}$ \qquad (height of the block)

Hence $O B=60-15=45 \mathrm{~cm}$

By Pythagoras theorem
$B C=\sqrt{O C^{2}-O B^{2}}=\sqrt{60^{2}-45^{2}}=39.6863 \mathrm{~cm}$
$B C=39.6863 \mathrm{~cm}$

When the wheel is about to start. Normal reaction at the point A is zero and
$\Sigma M_{C}=0$.
$\therefore P \times O B-W \cos 30 \times B C-W \sin 30 \times O B=0$
$45 P=10 \cos 30 \times 39.6863+10 \sin 30 \times 45$
$45 P=568.6932$.
$P=12.6376 \mathrm{~N}$

Hence the force P required to start the wheel is 12.6376 N .

Q1] c) If a horizontal force of 1200 N is applied to the block of 1000 N then block will be held in equilibrium or slide down or move up? $\mu=0.3$.

Solution:-

Let N be normal reaction and F_{S} be the frictional force

At the instant of impending motion $\quad \Sigma F_{Y}=0$

Therefore $\mathrm{N}-1000 \cos 30-1200 \sin 30=0$
$N=1000 \cos 30+1200 \sin 30$.
$N=1466.0254 \mathrm{~N}$
$F_{s}=\mu \times \mathrm{N}=0.3(1466.0254)$
$F_{S}=439.8076 \mathrm{~N}$.
Neglecting friction, net upward up the plane
$-1000 \sin 30+1200 \cos 30=539.2305 \mathrm{~N}$.
CASE 1:- Block is impending to move up the plane
$\Sigma F_{X}=-F_{s}-1000 \sin 30+1200 \cos 30$
$=-439.8076+539.2305$.
$\Sigma F_{X}=99.4229 \mathrm{~N}$
Therefore a net force of 99.4229 N acts up the plane so the block moves up the plane.

CASE 2:- Block is impending to move down the plane

$$
\begin{aligned}
& \Sigma F_{X}=F_{S}-1000 \sin 30+1200 \cos 30 \\
&=439.8076-539.2305 \ldots \ldots .(~ F r o m ~ \\
&1 \& 2) \\
& \Sigma F_{X}=979.0381 \mathrm{~N}
\end{aligned}
$$

Therefore a net force of 979.0381 N acts up the plane so the block moves up the plane.

Q1] d) Starting from rest at $\mathbf{S}=\mathbf{0}$ a car travels in a straight line with an acceleration as shown by they a-s graph. Determine the car's speed when $S=20 \mathrm{~m}, \mathrm{~S}=100 \mathrm{~m}$,
$S=150 \mathrm{~m}$.

Solution:-
Part 1:-

For first 40m of journey
$\mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{V} \frac{d v}{d s}=1$. $\left(\mathrm{a}=\mathrm{V} \frac{d v}{d s}\right)$
$V d v=d s$
On integration, $\frac{V^{2}}{2}=\mathrm{s}+c_{1}$
When $s=0, v=0$
$c_{1}=0$ \qquad (2)

From (1) and (2) $\frac{V^{2}}{2}=s$
Therefore $V^{2}=2 \mathrm{~s}$
When $\mathrm{s}=20 \mathrm{~m}, V^{2}=40$
Therefore $v=6.3246 \mathrm{~m} / \mathrm{s}$
When $\mathrm{s}=40 \mathrm{~m}, V^{2}=80$

Therefore $v=8.9443 \mathrm{~m} / \mathrm{s}$

Part 2:-

Motion of car from 40m to 120 m
$\mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{V} \frac{d v}{d s}=2$.
$V d v=d s$

On integration , $\frac{V^{2}}{2}=\mathrm{s}+c_{1}$.
$V^{2}=4 \mathrm{~s}+2 c_{1}$.
When $s=40,=80$ \qquad from (3)
$80=160+2 c_{2}$
$-80=2 c_{2}$.
From (4) and (5)
$V^{2}=4 s-80$

When $s=100 \mathrm{~m}, V^{2}=400-80=320$
$v=17.8885 \mathrm{~m} / \mathrm{s}$

When $s=120 \mathrm{~m},=480-80=400$
$\mathrm{V}=20 \mathrm{~m} / \mathrm{s}$.

Part 3:-

Motion of car from 120 m to 160 m
$E(120,2)$ and $F(160,0)$
Using two-point from equation of EF is
$\frac{a-2}{2-0}=\frac{s-120}{120-160}$
$-20 a+40=s-120$
$160-s=20 a$
$160-s=20 \mathrm{~V}$
$(160-s) d s=20 v d v$
On integration, $160 \mathrm{~s}-=20+C_{3}$
When $s=120, v=20 \mathrm{~m} / \mathrm{s}$. from (6)
$160 \times 120-(0.5) \times 120 \times 120=10 \times 20 \times 20+C_{3}$
$C_{3}=8000$.

From (7) and (8)
$160 s-\frac{s^{2}}{2}=20 \times \frac{v^{2}}{2}+c^{3}$
When $s=150 m, 160(150)-\frac{1}{2} s^{2}=10 v^{2}-8000$
$v^{2}=475$
$\mathrm{V}=21.7945 \mathrm{~m} / \mathrm{s}$

Hence when $s=20 \mathrm{~m}, \mathrm{v}=6.3246 \mathrm{~m} / \mathrm{s}$

When $\mathrm{s}=100 \mathrm{~m}, \mathrm{v}=17.8885 \mathrm{~m} / \mathrm{s}$
When $\mathrm{s}=150 \mathrm{~m}, \mathrm{v}=21.7945 \mathrm{~m} / \mathrm{s}$.

Q1] e) Three $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3$ of masses $1.5 \mathrm{~kg}, \mathbf{2 k g}$ and1 kg respectively are placed on a rough surface with coefficient of friction 0.20 as shown. If a force F is applied to accelerate the blocks at $3 \mathrm{~m} / \mathrm{s}^{2}$. What will be the force that 1.5 kg block exerts on 2 kg block?

Solution:-
$m_{1}=1.5 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}, m_{3}=1 \mathrm{~kg}, \mu=0.20, \mathrm{a}=3 \mathrm{~m} / \mathrm{s}^{2}$

For m3:-

Weight $w_{3}=m_{3} \times g=1 \mathrm{~g}$

Normal reaction $N_{3}=W_{3}=\mathrm{g}$

Dynamic friction force $=F_{3}=\mu N_{3}=0.2 \mathrm{~g}$

Let the force exerted by m2 on m3 be F23
By Newton $2^{\text {nd }}$ law
$\Sigma \mathrm{F}=\mathrm{ma}$
$F_{23}-F_{3}=m_{3} \times a$
$F_{23}=F_{3} \mathrm{D}+m_{3} \times \mathrm{a}$
$F_{23}=0.2 \mathrm{~g}+1 \mathrm{a}$
Similarly,

For m_{2} :-

Weight $W_{2}=m_{2} \mathrm{~g}$
Normal reaction $N_{2}=W_{2}=2 \mathrm{~g}$
Dynamic friction force $=F_{2} \mathrm{D}=\mu N_{2}=0.2 \times 2 \mathrm{~g}=0.4 \mathrm{~g}$.
Let the force exerted by m_{1} on m_{2} be F_{12}
By Newton's 2 ${ }^{\text {nd }}$ Iaw
$\Sigma \mathrm{F}=\mathrm{ma}$
$F_{12}-F_{32}-F_{2}=m_{2} \times a$
$F_{12}=F_{32}+F_{2}+=m_{2} \times a$
$=(0.2 g+1 a)+0.4 g+2 a$. \qquad from (1)
$=0.6 g+3 a$
$=0.6 \times 9.81+3 \times 3$
$=14.886 \mathrm{~N}$

The force that 1.5 kg block exerts on 2 kg block $=14.886 \mathrm{~N}$.

Q2] a) A dam is subjected to three forces as shown in fig. determine the single equivalent force and locate its point of intersection with base AD

Solution:-
Let R be the resultant and let it act at an angle α to the horizontal

In \triangle FED , $F D=1.5 \mathrm{~cm}$
$\therefore \mathrm{FE}=\mathrm{FD} \sin 60^{\circ}=1.2990$ and $\mathrm{ED}=\mathrm{FD} \cos 60^{\circ}=0.75$
$\therefore A E=A D-A E=5-0.75=4.25$
Resolving the forces along X-axis, $R_{X}=50-30 \sin 60=24.0192 \mathrm{~N}$
Resolving the forces along Y-axis, $R_{Y}=-120-30 \cos 60=-135$
$\therefore R=\sqrt{{R_{X}}^{2}+{R_{Y}}^{2}}=\sqrt{(24.0192)^{2}+(-135)^{2}}=137.1201 \mathrm{~N}$
And , $\alpha=\tan ^{-1}\left(\frac{R_{Y}}{R_{X}}\right)=\tan ^{-1}\left(\frac{-135}{24.0192}\right)=-79.9115^{\circ}$
Resultant moment at $\mathrm{A}=-50 \times 2-120 \times 2-30 \sin 60^{\circ} \times 4.25+30 \sin 60^{\circ} \times 1.2990$
$A=-370 \mathrm{Nm}$
By Varignon's Theorem,
$\therefore 370=137.1201 \times X$
$X=2.6984 m$
In $\Delta \mathrm{AGH}, \sin \alpha=\frac{x}{A H}$
$\mathrm{AH}=\frac{x}{\sin \alpha}=\frac{2.6984}{\sin (79.9115)}=2.7407 \mathrm{~m}$
Hence,

Resultant force $=137.1201 \mathrm{~N}\left(79.9115^{\circ}\right)$

Resultant moment $=370 \mathrm{Nm}$

Resultant cuts base AD at a distance of 2.7407 m right of A

Q2] b) A cylinder weighing, 1000N and 1.5 m diameter is supported by a beam $A B$ of length 6 m and weight 400 N as shown. Neglecting friction at the surface of contact of the cylinder. Determine (1) wall reaction at ' D '; (2) hinged reaction at support ' A '; (3) tension in the cable BC

Solution:-

Diameter of cylinder $=1.5 \mathrm{~m}$

Radius $\mathrm{OD}=\mathrm{OP}=0.75 \mathrm{~m}$

Also, $A B=6$

Now, $\angle D A P=90^{\circ}-45^{\circ}=45^{\circ}$
Also, $\triangle A O P \cong \triangle A O D$
$\angle \mathrm{OAP}=\frac{1}{2} \times 45=22.5^{\circ}$
In $\triangle A O P, \angle O P A=90^{\circ}$
$\tan \angle \mathrm{OAP}=\frac{O P}{A P}$
$\tan 22.5=\frac{0.75}{A P}$
$\mathrm{AP}==\frac{0.75}{\tan 22.5}=1.8107 \mathrm{~m}$

FBD of cylinder is as shown

Since the cylinder is in equilibrium,

By Lami's theorem.

$\frac{W}{\sin (180-45)}=\frac{R_{D}}{\sin (90+45)}=\frac{R_{P}}{\sin 90}$
$\frac{1000}{\sin 135}=\frac{R_{D}}{\sin 135}$ and $\frac{1000}{\sin 135}=\frac{R_{P}}{1}$
$R_{D}=1000 \mathrm{~N}$ and $R_{P}=1414.2136 \mathrm{~N}$

FBD of beam $A B$ is as shown

Let Q be mid-point of $A B$
$A Q=3 m$

Since beam $A B$ is in equilibrium,
$\sum M_{A}=0$
$-R_{P} \times A P-400 \times A Q \cos 45+T \sin (30+45) \times A B=0$
$-1414.2136 \times 1.8107-400 \times 3 \times 0.7071+T \times 0.9659 \times 6=0$
$\mathrm{T}=588.266 \mathrm{~N}$

Also, $\sum F_{X}=0$
$R_{A} \cos \alpha+R_{P} \cos 45-T \sin 60=0$
$R_{A} \cos \alpha+1414.2136 \times 0.7071-588.266 \times 0.866=0$
$R_{A} \cos \alpha=-490.5676$

And $\sum F_{Y}=0$
$R_{A} \sin \alpha-400-R_{P} \sin 45+T \cos 60=0$
$R_{A} \sin \alpha-400-1414.2136 \times 0.7071+588.266 \times 0.5=0$
$R_{A} \sin \alpha=1105.8790$

Squaring and adding (1) and (2)
$R_{A}{ }^{2} \cos ^{2} \alpha+R_{A}{ }^{2} \sin ^{2} \alpha=(-490.5676)^{2}+(1105.8790)^{2}$
$R_{A}=1209.8037 \mathrm{~N}$

Dividing, (2) by (1), $\frac{R_{A} \sin \alpha}{R_{A} \cos \alpha}=\frac{1105.8790}{490.5676}$
$\alpha=\tan ^{-1} 2.25431=66.0779^{\circ}$
Hence,

1. Wall reaction at $\mathrm{D}=R_{D}=1000 \mathrm{~N}$
2. Hinged reaction at support $\mathrm{A}=1209.8037$

Q2] c) Two balls of 0.12 kg collide when they are moving with velocities $\mathbf{2 m} / \mathrm{sec}$ and $6 \mathrm{~m} / \mathrm{sec}$ perpendicular to each other as shown in fig. if the coefficient of restitution between ' A ' and ' B ' is 0.8 determine the velocity of ' A ' and ' B ' after impact

Solution:-
$m_{1}=m_{2}=0.12 \mathrm{~kg} \quad u_{1 x}=2 \mathrm{~m} / \mathrm{s} \quad u_{1 y}=0 \mathrm{~m} / \mathrm{s} \quad u_{2 x}=0 \mathrm{~m} / \mathrm{s} \quad u_{2 y}=6 \mathrm{~m} / \mathrm{s} \quad$ с $=0.8$
Case1 :- line of impact is X -axis
Velocities along Y -axis remains constant
$v_{1 y}=u_{1 y}=0 \mathrm{~m} / \mathrm{s}$ and $v_{2 y}=u_{2 y}=6 \mathrm{~m} / \mathrm{s}$
By law of conservation of momentum,
$m_{1} u_{1 x}+m_{2} u_{2 x}=m_{1} v_{1 x}+m_{2} v_{2 x}$
$0.12 \times 2+0.12 \times 0=0.12 \times v_{1 x}+0.12 \times v_{2 x}$
Dividing by $0.12,2=v_{2 x}+v_{1 x}$
Also, coefficient of restitution $=\mathrm{e}=\frac{v_{2 x}-v_{1 x}}{u_{1 x}-u_{2 x}}$
$0.8=\frac{v_{2 x}-v_{1 x}}{2-0}$
$1.6=v_{2 x}-v_{1 x}$
Solving (2) and (3)
$v_{2 x}=1.8 \mathrm{~m} / \mathrm{s}$ and $v_{1 x}=0.2 \mathrm{~m} / \mathrm{s}$
From (1) and (4)
$v_{1}=\sqrt{v_{1 x}{ }^{2}+v_{1 y}{ }^{2}}$ and $v_{2}=\sqrt{v_{2 x}{ }^{2}+v_{2 y}{ }^{2}}$
$v_{1}=\sqrt{0.2^{2}+0^{2}}$ and $v_{2}=\sqrt{1.8^{2}+6^{2}}$
$v_{1}=0.2 \mathrm{~m} / \mathrm{s}$ and $v_{2}=6.2642 \mathrm{~m} / \mathrm{s}$
Also after impact

Velocity of ball $A=0.2 \mathrm{~m} / \mathrm{s}$
Velocity of ball B $=6.2642 \mathrm{~m} / \mathrm{s}$
Case 2:- line of impact is y-axis
Velocities along x-axis remains constant
$v_{1 x}=u_{1 x}=2 \mathrm{~m} / \mathrm{s}$ and $v_{2 x}=u_{2 x}=0 \mathrm{~m} / \mathrm{s}$
By law of conservation of momentum,
$m_{1} u_{1 y}+m_{2} u_{2 y}=m_{1} v_{1 y}+m_{2} v_{2 y}$
$0.12 \times 0+0.12 \times 6=0.12 \times v_{1 y}+0.12 \times v_{2 y}$
Dividing by $0.12,6=v_{2 y}+v_{1 y}$
Also, coefficient of restitution $=\mathrm{e}=\frac{v_{2 y}-v_{1 y}}{u_{1 y}-u_{2 y}}$
$0.8=\frac{v_{2 y}-v_{1 y}}{0-6}$
$-4.8=v_{2 y}-v_{1 y}$ \qquad
Solving (6) and (7)
$v_{2 y}=0.6 \mathrm{~m} / \mathrm{s}$ and $v_{1 y}=5.4 \mathrm{~m} / \mathrm{s}$
From (4) and (8)
$v_{1}=\sqrt{v_{1 x}{ }^{2}+v_{1 y}{ }^{2}}$ and $v_{2}=\sqrt{v_{2 x}{ }^{2}+v_{2 y}{ }^{2}}$
$v_{1}=\sqrt{2^{2}+5.4}$ and $v_{2}=\sqrt{0^{2}+0.6^{2}}$
$v_{1}=5.7585 \mathrm{~m} / \mathrm{s}$ and $v_{2}=0.6 \mathrm{~m} / \mathrm{s}$
Also, $\alpha_{1}=\tan ^{-1}\left(\frac{v_{1 y}}{v_{1 x}}\right)=\tan ^{-1}\left(\frac{5.4}{2}\right)=69.67^{\circ}$
Hence, after impact
Velocity of ball $\mathrm{A}=5.7585 \mathrm{~m} / \mathrm{s}$
Velocity of ball $B=0.6 \mathrm{~m} / \mathrm{s}$

Solution:-
In $\triangle \mathrm{AOB}$
$\mathrm{OB}=8 \mathrm{~cm}$
$\tan 60=\frac{A B}{B O} \quad \therefore \sqrt{3}=\frac{A B}{8} \quad \therefore \mathrm{AB}=8 \sqrt{3}$
Also $O D=8 \mathrm{~cm}$ and $C D=3 \mathrm{~cm}$
$O C=8-3=5 \mathrm{~cm}$

SR NO	PART	Area(in cm^{2})	X-co-ord of $\text { C.G. }\left(x_{1}\right)$	Y-co-ord of $\text { C.G. }\left(y_{1}\right)$	A x_{1}	A y_{1}
1)	Triangle AOB $B=8, H=8 \sqrt{3}$	$\begin{aligned} & =0.5 \mathrm{BH} \\ & =0.5 \times 8 \times \\ & 8 \sqrt{3} \\ & =55.4256 \end{aligned}$	$\begin{aligned} & 8-\frac{B}{3}=8-\frac{8}{3} \\ & =5.3333 \end{aligned}$	$\begin{aligned} & \frac{H}{3}=\frac{8 \sqrt{3}}{3} \\ &=4.6188 \end{aligned}$	295.6033	256.000
2)	Semicircle radius $(R)=8$	$\begin{aligned} & 0.5 \pi R^{2} \\ & =0.5 \times 8^{2} \pi \\ & =100.5372 \end{aligned}$		$\begin{aligned} & -\frac{4 R}{3 \pi}=\frac{-4 \times 8}{3} \\ & =-3.3955 \end{aligned}$	0.0000	-341.333
3)	Cut semicircle radius(r) $=3$	$\begin{aligned} & -0.5 \pi r^{2} \\ & =-0.5 \times 3^{2} \pi \\ & =-14.1372 \end{aligned}$	-5	$\begin{aligned} & -\frac{4 r}{3 \pi}=\frac{-4 \times 3}{3} \\ & =-1.2732 \end{aligned}$	70.6858	18.000
	Total	141.8193			366.2891	-67.3333

$\bar{x}=\frac{\sum A x}{\sum A}=\frac{366.2891}{141.8193}=2.5828$
$\bar{y}=\frac{\sum A y}{\sum A}=\frac{-67.3333}{141.8193}=-0.4748$
Hence centroid is equals to $(2.5828,0.4748)$

Q3] b) Knowing that the tension in AC is $T_{2}=20 \mathrm{kN}$ determine required values T_{1} and T_{3} so that the resultant of the three forces are ' A ' is vertical. Also, calculate this resultant. (6)

Solution:-
From figure we observe,
$A=(0,48,0) ; \quad B=(16,0,12) ; \quad C=(16,0,-24) ; \quad D=(-14,0,0) ;$
Let $\bar{a}, \bar{b}, \bar{c}$ and \bar{d} be the position vectors of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively w.r.t. to origin 0 .
$\therefore \overline{O A}=\bar{a}=48 \vec{\jmath} ; \quad \overline{O B}=\bar{b}=16 \vec{\jmath}+12 \vec{k} ;$
$\overline{O C}=\bar{c}=16 \vec{\imath}-24 \vec{k} ; \quad \overline{O D}=\bar{d}=-14 \vec{\imath} ;$
Now,
$\overline{A B}=\bar{b}-\bar{c}=16 \vec{\jmath}+12 \vec{k}-48 \vec{\jmath}$
$\overline{A C}=\bar{c}-\bar{a}=16 \vec{\imath}-24 \vec{k}-48 \vec{\jmath}$
$\overline{A D}=\bar{d}-\bar{a}=-14 \vec{\imath}-48 \vec{\jmath}$
Magnitude,
$|\overline{A B}|=\sqrt{(16)^{2}+(-48)^{2}+(12)^{2}}=52$
$|\overline{A C}|=\sqrt{(16)^{2}+(-48)^{2}+(-24)^{2}}=56$
$|\overline{A D}|=\sqrt{(-14)^{2}+(-48)^{2}}=50$
Unit vector,
$\widehat{A B}=\frac{\overline{A B}}{|\overline{A B}|}=\frac{16 \vec{\imath}-48 \vec{\jmath}+12 \vec{k}}{52}=\frac{4}{13} \vec{\imath}-\frac{12}{13} \vec{\jmath}+\frac{3}{13} \vec{k}$
$\widehat{A C}=\frac{\overline{A C}}{|\overline{A C}|}=\frac{16 \vec{\imath}-48 \vec{\jmath}-24 \vec{k}}{56}=\frac{2}{7} \vec{\imath}-\frac{6}{7} \vec{\jmath}-\frac{3}{7} \vec{k}$
$\widehat{A D}=\frac{\overline{A D}}{|\overline{A D}|}=\frac{-14 \vec{i}-48 \vec{j}}{50}=\frac{-7}{25} \vec{\imath}-\frac{24}{25} \vec{j}$

Tension in $\mathrm{AB}=\overline{T_{1}}=T_{1}\left(\frac{4}{13} \vec{\imath}-\frac{12}{13} \vec{\jmath}+\frac{3}{13} \vec{k}\right)$
Tension in AC $=\overline{T_{2}}=20\left(\frac{2}{7} \vec{\imath}-\frac{6}{7} \vec{\jmath}-\frac{3}{7} \vec{k}\right)$
Tension in $\mathrm{AD}=\overline{T_{3}}=T_{3}\left(\frac{-7}{25} \vec{\imath}-\frac{24}{25} \vec{\jmath}\right)$
Net force $=\bar{T}_{1}+\bar{T}_{2}+\bar{T}_{3}=T_{1}\left(\frac{4}{13} \vec{\imath}-\frac{12}{13} \vec{\jmath}+\frac{3}{13} \vec{k}\right)+20\left(\frac{2}{7} \vec{\imath}-\frac{6}{7} \vec{\jmath}-\frac{3}{7} \vec{k}\right)+T_{3}\left(\frac{-7}{25} \vec{\imath}-\frac{24}{25} \vec{\jmath}\right)$
$=\left(\frac{4}{13} T_{1}+20 \times \frac{2}{7}-\frac{7}{25} T_{3}\right) \vec{\imath}-\left(\frac{12}{13} T_{1}+20 \times \frac{6}{7}+\frac{24}{25} T_{3}\right) \vec{\jmath}+\left(\frac{3}{13} T_{1}-20 \times \frac{3}{7}\right) \vec{k}$
Given, the resultant at ' A ' is vertical i.e., along y-axis
$\frac{3}{13} T_{1}-20 \times \frac{3}{7} \& \frac{4}{13} T_{1}+20 \times \frac{2}{7}-\frac{7}{25} T_{3}$
$\frac{3}{13} T_{1}=20 \times \frac{3}{7}$
$T_{1}=\frac{260}{7}=37.1429 \mathrm{kN}$
From (2) and (3), $\frac{4}{13} \times \frac{260}{7}+20 \times \frac{2}{7}-\frac{7}{25} T_{3}=0$
$\frac{120}{7}=\frac{7}{25} T_{3}$
$T_{3}=\frac{3000}{49}=61.2245 \mathrm{kN}$
From (1), (3) and (4),
Resultant $=-\left(\frac{12}{13} \times \frac{260}{7}+20 \times \frac{6}{7}+\frac{24}{25} \times \frac{3000}{49}\right)$
Resultant $=-\frac{5400}{49}=-110.2041 \mathrm{kN}$

Q3] c) Fig shows a collar of mass 20 kg which is supported on the smooth rod. The attached springs are both compressed 0.4 m when $\mathrm{d}=0.5 \mathrm{~m}$. determine the speed of the collar after the applied force $F=100 \mathrm{~N}$ causes it to be displaced so that $d=0.3 \mathrm{~m}$. knowing that collar is at rest when $d=0.5 \mathrm{~m}$

Solution:-
$\mathrm{m}=20 \mathrm{~kg}$,
position 1: when $\mathrm{d}=0.5 \mathrm{~m}$

$\mathrm{v}=0$
$K E_{1}=\frac{1}{2} m v_{1}^{2}=0$ and $P E_{1}=m g h=20 g \times 0.5=10 g$
Compression of Top spring $\left(x_{T 1}\right)=0.4 \mathrm{~m}$
Compression of B spring $\left(x_{B 1}\right)=0.4 \mathrm{~m}$
Spring energy of top spring $=E_{S_{T 1}}=\frac{1}{2} K_{T 1} x_{T 1}^{2}=\frac{1}{2} \times 1.5 \times 0.4^{2}=0.12 \mathrm{~J}$
Spring energy of bottom spring $=E_{S_{B 1}}=\frac{1}{2} K_{B 1} x_{B 1}^{2}=\frac{1}{2} \times 2.5 \times 0.4^{2}=0.2 \mathrm{~J}$

Position 2: when $\mathrm{d}=0.3 \mathrm{~m}$
Let v be the velocity of the block
$K E_{2}=\frac{1}{2} m v^{2}=\frac{1}{2} \times 20 \times v^{2}=10 v^{2}$ and $P E_{2}=m g h=20 g \times 0.3=6 g$

Compression of top spring $\left(x_{T 2}\right)=0.4-0.2=0.2 \mathrm{~m}$
Compression of bottom spring $\left(x_{B 2}\right)=0.4+0.2=0.6 \mathrm{~m}$
Spring energy of top spring $=E_{S_{B 2}}=\frac{1}{2} K_{T 2} x_{T 2}^{2}=\frac{1}{2} \times 1.5 \times 0.2^{2}=0.03 \mathrm{~J}$
Spring energy of bottom spring $=E_{S_{B 2}}=\frac{1}{2} K_{B 2} x_{B 2}^{2}=\frac{1}{2} \times 2.5 \times 0.6^{2}=0.45 \mathrm{~J}$
Work done by the vertical component of the force $=W=100 \sin 60 \times 0.2=17.32015 \mathrm{~J}$
Applying work energy principle for the position (1) and (2), $U_{1-2}=K E_{2}-K E_{1}$
$\mathrm{W}+P E_{1}-P E_{2}+E_{S_{T 1}}+E_{S_{B 1}}-E_{S_{B 2}}-E_{S_{B 2}}=K E_{2}-K E_{1}$
$17.3205+10 \mathrm{~g}-6 \mathrm{~g}+0.12+0.2-0.03-0.45=10 v^{2}$
$56.3871=10 v^{2}$
$\mathrm{V}=2.3746 \mathrm{~m} / \mathrm{s}$
The speed of the collar after the force F is applied $=2.3746 \mathrm{~m} / \mathrm{s}$.

Q4] a) Find the support reactions at point ' A ' and ' B ' of the given beam

Solution:-
Effective forces of distributed load CAD $=\frac{1}{2} \times 1 \times 10=5 \mathrm{kN}$
It acts as $\frac{1}{3} \mathrm{~m}$ from A

Effective force of distributed load EAD $=\frac{1}{2} \times 2 \times 10=10 \mathrm{kN}$ It acts at $\frac{2}{3} \mathrm{~m}$ from A

Effective force of distributed load JFBGJ $=3 \times 10=30 \mathrm{kN}$
If acts at 1.5 m from B
Effective force of distributed load JGH $=\frac{1}{2} \times 3 \times(20-10)=15 \mathrm{kN}$
It acts at 1 m from B

Since the beam is in equilibrium $\sum M_{A}=0$
$5 \times \frac{1}{3}-10 \times \frac{2}{3}-12 \sin 30 \times 2.5-30 \times 4.5-15 \times 5+R_{B} \times 6=0$
$-230+R_{B} \times 6=0$
$R_{B}=38.333 \mathrm{kN}$
Also, $\sum F_{X}=0$
$R_{A} \cos \alpha-12 \cos 30=0$
$R_{A} \cos \alpha=10.3923 \mathrm{kN}$
And, $\sum F_{Y}=0$
$R_{A} \sin \alpha-5-10-30-12 \sin 30-15+R_{B}=0$
$R_{A} \sin \alpha-66+38.333=0$
$R_{A} \sin \alpha=27.6667 \mathrm{kN}$
Squaring and adding (1) and (2) ,
$R_{A}{ }^{2} \cos ^{2} \alpha+R_{A}{ }^{2} \sin ^{2} \alpha=10.3923^{2}+27.6667^{2}$
$R_{A}=29.5541 \mathrm{kN}$
Dividing, (2) by (1), $\frac{R_{A} \sin \alpha}{R_{A} \cos \alpha}=\frac{27.6667}{10.3923}$
$\alpha=\tan ^{-1}(2.6622)=69.4125^{\circ}$
Hence,
Reaction at $\mathrm{A}=29.5541$
Reaction at $\mathrm{B}=38.3333 \mathrm{kN}$

Q4] b) The motion of the particle is defined by the relation $a=0.8 \mathrm{t} \mathrm{m} / \mathrm{s}^{2}$ where ' t ' is measured in sec. It is found that at $X=5 \mathrm{~cm}, V=12 \mathrm{~m} / \mathrm{sec}$ when $\mathrm{t}=2 \mathrm{sec}$ find the position and velocity at $\mathrm{t}=6 \mathrm{sec}$.

Solution:-
Given :- $\mathrm{a}=0.8 \mathrm{t}$

$$
\frac{d v}{d t}=0.8 t
$$

$$
\mathrm{dv}=0.8 \mathrm{tdt}
$$

On integration
$\mathrm{V}=0.8 \times \frac{t^{2}}{2}+\mathrm{c}$
Therefore, $\mathrm{V}=0.4 t^{2}+\mathrm{c}$.
Given, when $\mathrm{t}=2$ then $\mathrm{V}=12$
$12=0.4 \times 2^{2}+c$
$12=1.6+\mathrm{c}$
$\mathrm{c}=10.4$
From (1) \& (2)
$\mathrm{V}=0.4 t^{2}+10$.
Therefore $\frac{d X}{d t}=0.4 t^{2}+10$.
$\mathrm{dX}=\left(0.4 t^{2}+10\right) \mathrm{dt}$
On integration, $\mathrm{X}=0.4 \times \frac{t^{3}}{3}+10.4 \mathrm{t}+\mathrm{k}$
Given, when $t=2$ then $X=5$
$5=0.4 \times \frac{2^{3}}{3}+10.4 \times 2+\mathrm{k}$
$\mathrm{k}=-253 / 15$.
From (4) and (5)
$\mathrm{X}=0.4 \mathrm{x} \frac{t^{3}}{3}+10.4 \mathrm{t}+\mathrm{k}$
$X=0.4 \times \frac{t^{3}}{3}+10.4 t-\frac{253}{15}$

When $\mathrm{t}=6$,
From (3) $V=0.4 \times 6 \times 6+10.4=24.8 \mathrm{~m} / \mathrm{s}$
From (6) $X=0.4 \times \frac{6^{3}}{3}+10.4 t-\frac{253}{15}$
$\mathrm{X}=74.333$ from the initial position

Q 4] c) Rod EB in the mechanism shown in the figure has angular velocity of $4 \mathrm{rad} / \mathrm{sec}$ at the instant shown in counter clockwise direction. Calculate

1) Angular velocity of $A D 2$) velocity of collar (D '. 3) velocity or point ' A '

Solution:-
$\omega_{E B}=4 \mathrm{rad} / \mathrm{sec}, \mathrm{EB}=192 \mathrm{~mm}=0.192 \mathrm{~m}$
$\mathrm{AB}=240 \mathrm{~mm}=0.24 \mathrm{~m}, \mathrm{DB}=360 \mathrm{~mm}=0.36 \mathrm{~m}$
Instantaneous center of rotation is the point of intersection of $\overrightarrow{v_{A}}$ and $\overrightarrow{v_{B}}$.
Let I be the ICR as shown in the figure

In Δ BID
$\angle \mathrm{BDI}=30^{\circ}, \angle \mathrm{BID}=90^{\circ}$
$\angle \mathrm{IBD}=180-30^{\circ}-90^{\circ}=60^{\circ}$

IB $=0.36 \sin 30=0.18$ (1) and

ID $=0.36 \cos 30=0.3117 \mathrm{~m}$
Also $\angle \mathrm{IBA}=180-60^{\circ}=120^{\circ}$
In \triangle IBA, by cosine rule
$I A^{2}=I B^{2}+A B^{2}-2 I A \times A B \times \cos \angle \mathrm{IBA}$
$I A^{2}=0.18^{2}+0.24^{2}-2 \times 0.18 \times 0.24 \times \cos 120^{\circ}$ \qquad (from 1)
$\mathrm{IA}=0.3650 \mathrm{~m}$
By sine rule, $\frac{A B}{\sin I}=\frac{I B}{\sin A}=\frac{I A}{\sin B}$
$\frac{0.24}{\operatorname{sinI}}=\frac{0.3650}{\sin 120}$ \qquad (from 3 \& 4)
$\sin \mathrm{I}=\frac{0.24 \times \sin 120^{\circ}}{0.3650}=0.5694$
$\angle \mathrm{AIB}=34.7113^{\circ}$
Now, instantaneous velocity of point $B=r \omega$
$v_{B}=E B \times \omega_{E B}=0.192 \times 4=0.768 \mathrm{~m} / \mathrm{s}$ \qquad
Angular velocity of the $\operatorname{rod} \mathrm{AD}=\omega_{A D}=\frac{v_{B}}{r}=\frac{v_{B}}{I B}=\frac{0.768}{0.18}=4.2667 \mathrm{rad} / \mathrm{s}$ \qquad (from $1 \& 5$)

Instantaneous velocity of point $D=r \omega$
$=\mathrm{ID} \times \omega_{A D}=0.3117 \times 4.2667=1.3302 \mathrm{~m} / \mathrm{s}$ \qquad (from $2 \& 6$)

And instantaneous velocity of point $A=r \omega$
$=\mathrm{IA} \times \omega_{A D}=0.3650 \times 4.2667=1.5572 \mathrm{~m} / \mathrm{s}$ \qquad .(from $4 \& 6$)

Hence,

1. Angular velocity of $\mathrm{AD}=4.2667 \mathrm{rad} / \mathrm{sec}$
2. Velocity of collar ' $\mathrm{D}^{\prime}=1.3302 \mathrm{~m} / \mathrm{s}$

Velocity or point A $=1.5572 \mathrm{~m} / \mathrm{s}$

Q5] a) A simply supported pin jointed truss is loaded and supported as shown in fig, (1) identify the members carrying zero forces (2) find support reactions. (3) find forces in members CD, CG, FG and CF using method of section

Solution:-
$\ln \Delta \mathrm{GFC}, \tan \theta=\frac{G F}{C F}=\frac{4}{3}$
$\theta=\tan ^{-1}\left(\frac{4}{3}\right)=53.1301^{\circ}$

$\sin \theta=0.8$ and $\cos \theta=0.6$
zero force members:
loading at joint H is as shown.
Member EH will have zero force.
Similarly, after EH is removed loading at joint E is as shown
Member EG will have zero force.
Support reactions:

As the truss is in equilibrium, $\sum M_{A}=0$
$-30 \times 4-90 \cos \theta \times 3-60 \cos \theta \times 8-60 \sin \theta \times 6-60 \times 8+R_{B} \times 16=0$
$-120-360 \times 0.6-270 \times 0.8-480 \times 0.6-360 \times 0.8-480+16 R_{B}=0$ \qquad (from 1)
$-1608+16 R_{B}=0$
$R_{B}=100.5 k N$
Also, $\sum F_{Y}=0$
$R_{A} \sin \alpha-30-60-90 \cos \theta-60 \cos \theta+R_{B}=0$
$R_{A} \sin \alpha=79.5 k N$
And, $\sum F_{X}=0$
$R_{A} \cos \alpha+90 \sin \theta+60 \sin \theta=0$
$R_{A} \cos \alpha+150 \times 0.8=0$
$R_{A} \cos \alpha=-120 k N$

Squaring and adding (2) and (3),
$\left(R_{A} \sin \alpha\right)^{2}+\left(R_{A} \cos \alpha\right)^{2}=(79.5)^{2}+(-120)^{2}$
$R_{A}^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=6320.25+14400$
$R_{A}^{2}=20720.25$
$R_{A}=143.9453 \mathrm{kN}$
Dividing, (2) and (3) , we get
$\tan \alpha=0.6625$
$\alpha=33.5245^{\circ}$

Method of sections:

Applying conditions of equilibrium to the section as shown $\sum M_{A}=0$
$-30 \times 4-\left(90+F_{C G}\right) \cos \theta \times 4-\left(90+F_{C G}\right) \sin \theta \times 3=0$
$-120-\left(90+F_{C G}\right) \times 0.6 \times 4-\left(90+F_{C G}\right) \times 0.8 \times 3=0$ OUR 0 ENTEKS $:$
$-4.8\left(90+F_{C G}\right)=120$
$F_{C G}=-115 k N$
Also, $\sum F_{Y}=0$
$R_{A} \sin \alpha-30-F_{C G} \cos \theta+F_{C D} \cos \theta-90 \cos \theta=0$
$79.5-30-115 \times 0.6+F_{C D} \times 0.6-90 \times 0.6=0$
$64.5+0.6 F_{C D}=0$
$F_{C D}=-107.5 \mathrm{kN}$
And, $\sum F_{X}=0$
$R_{A} \cos \alpha+F_{F G}+F_{C G} \sin \theta+F_{C D} \sin \theta+90 \sin \theta=0$
$-120+F_{F G}-115 \times 0.8-107.5 \times 0.8+90 \times 0.8=0$
$F_{F G}=226 k N$
Applying conditions of equilibrium to the section shown below, $\Sigma M_{A}=0$

$F_{F C} \times 4-30 \times 4=0$
$F_{F C}=30 k N$ \qquad
Also, $\sum F_{Y}=0$
$R_{A} \sin \alpha-30+F_{A C} \cos \theta+F_{F C}=0$
$79.5-30-F_{A C} \times 0.6+30=0$
$F_{A C}=132.5 \mathrm{kN}$
Members carrying zero forces are EH and EG
Support reactions:-
$R_{A}=143.9453 \mathrm{kN}$
$R_{B}=100.5 \mathrm{kN}$
Forces in members:-
$C D=107.5 \mathrm{kN}(\mathrm{C}) \mathrm{CG}=115 \mathrm{kN}(\mathrm{C})$
$\mathrm{FG}=226 \mathrm{kN}(\mathrm{T})$ and $\mathrm{CF}=30 \mathrm{kN}(\mathrm{T})$

Q5] b) A jet of water discharging from nozzle hits a vertical screen placed at a distance of 6 m from the nozzle at a height of 4 m . when the screen is shifted by 4 m away from the nozzle from its initial position the jet hits the screen again at the same point. Find the angle of projection and velocity of projection of the jet at the nozzle.

Solution:-

The path of the projectile is given by $\mathrm{y}=\mathrm{x} \tan \theta-\frac{g x^{2}}{2 u^{2}} \sec ^{2} \theta$

The water jet passes through the point $A(6,4)$ and $B(10,4)$

Substituting, $x=6$ and $y=4$ in (1) we get $4=6 \tan \theta-\frac{36 g}{2 u^{2}} \sec ^{2} \theta$

Substituting, $x=10$ and $y=4$ in (1) we get $4=10 \tan \theta-\frac{100 g}{2 u^{2}} \sec ^{2} \theta$
Multiplying equation (2) by 25 and equation (3) by 9 and then subtract
$\therefore 100-36=\left(150 \tan \theta-\frac{900 g}{2 u^{2}} \sec ^{2} \theta\right)-\left(90 \tan \theta-\frac{900 g}{2 u^{2}} \sec ^{2} \theta\right)$
$\therefore 64=60 \tan \theta$
$\theta=\tan ^{-1}\left(\frac{64}{60}\right)=46.8476^{\circ}$
From (3) and (4),
$4=10 \tan (46.8476)-\frac{100 g}{2 u^{2}} \sec ^{2}(46.8476)$
$\frac{1048.58}{u^{2}}=6.6667$
$u^{2}=157.2862$
$U=12.5414 \mathrm{~m} / \mathrm{s}$

Hence the angle of projection $=46.8476^{\circ}$
Velocity of projection $=12.5414 \mathrm{~m} / \mathrm{s}$

Q5] c) In a crack and connecting rod mechanism the length of crack and connecting rod are 300 mm and 1200 mm respectively. The crack is rotating at 180 rpm . Find the velocity of piston, when the crack is at an angle of 45° with the horizontal

Solution:-
Let $O A$ and $A B$ be the crank and the connecting rod.
Frequency $(\mathrm{n})=180 \mathrm{rpm}=\frac{180}{60}=3 \mathrm{rps}$

$\mathrm{OA}=300 \mathrm{~nm}=0.3 \mathrm{~m}, \mathrm{AB}=1200 \mathrm{~mm}=1.2 \mathrm{~m}$
We assume crank is rotating in anti-clockwise direction
\therefore Angular velocity of the crank $=\omega_{A B}=2 \pi n=2 \pi \times 3=18.8496 \mathrm{rad} / \mathrm{s}$
\therefore instantaneous velocity of point $\mathrm{A}=\mathrm{r} \omega$
$v_{A}=O A \times \omega_{O A}=0.3 \times 18.8496=5.6549 \mathrm{~m} / \mathrm{s}$
Instantaneous centre of rotation is the point of intersection of $\overrightarrow{v_{A}}$ and $\overrightarrow{v_{B}}$
Let I be the ICR of the connecting rod $A B$ as shown in figure.
In $\triangle \mathrm{OAB}$ by sine rule, $\frac{A B}{\sin O}=\frac{O A}{\sin B}$
$\therefore \frac{1.2}{\sin 45}=\frac{0.3}{\sin \angle A B O}$
$\therefore \sin \angle A B O=\frac{0.3 \sin 45}{1.2}=0.1768$
$\therefore \angle A B O=10.1821^{\circ}$
In $\triangle \mathrm{IOB}, \angle B I O=180^{\circ}-90^{\circ}-45^{\circ}=45^{\circ}$
In $\Delta \mathrm{IAB}, \angle A B I=90-10.1821^{\circ}=79.8179^{\circ}$
$\therefore \angle I A B=180^{\circ}-45^{\circ}-79.8179^{\circ}=55.1821^{\circ}$

In $\triangle \mathrm{IAB}$ by sine rule, $\frac{A B}{\sin I}=\frac{I B}{\sin A}=\frac{I A}{\sin B}$
$\therefore \frac{1.2}{\sin 45}=\frac{I B}{\sin 55.1821}=\frac{I A}{\sin 79.8179}$
$\therefore \frac{1.2}{\sin 45}=\frac{I B}{\sin 55.1821}$ and $\therefore \frac{1.2}{\sin 45}=\frac{I A}{\sin 79.8179}$
$\mathrm{IB}=\frac{1.2 \sin 55.1821}{\sin 45}=1.3931$ and
$\mathrm{IA}=\frac{1.2 \sin 79.8179}{\sin 45}=1.6703$
Angular velocity of the rod $\mathrm{AB}=\omega_{A B}=\frac{v_{A}}{r}=\frac{v_{A}}{I A}=\frac{5.6549}{1.6703}=3.3855 \mathrm{rad} / \mathrm{s}$
Instantaneous velocity of $B=r \omega_{A B}=I B \times \omega_{A B}=1.3932 \times 3.3855=4.7168 \mathrm{~m} / \mathrm{s}$
Hence, velocity of piston $=4.7168 \mathrm{~m} / \mathrm{s}$

Q6] a) Force $F=80 i+50 j-60 k$ passes through a point $A(6,2,6)$. Compute its moment about a point $B(8,1,4)$

Solution:-
$\bar{F}=80 \vec{\imath}+50 \vec{\jmath}-60 \vec{k}$
Let \bar{a} and \bar{b} be the position vectors of point A and B respectively.
$\bar{a}=6 \vec{\imath}+2 \vec{\jmath}+6 \vec{k}$ and $\vec{b}=8 \vec{\imath}+1 \vec{\jmath}+4 \vec{k}$
$\overline{B A}=\bar{a}-\bar{b}=(6 \vec{\imath}+2 \vec{\jmath}+6 \vec{k})-(8 \vec{\imath}+1 \vec{\jmath}+4 \vec{k})=-2 \vec{\imath}+1 \vec{\jmath}+2 \vec{k}$
Moment of F about $\mathrm{B}=\overline{B A} \times \bar{F}$
$\mathrm{B}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ -2 & 1 & 2 \\ 80 & 50 & -60\end{array}\right|=\vec{\imath}(-60-100)-\vec{\jmath}(120-160)+\vec{k}(-100-80)=-160 \vec{\imath}+40 \vec{\jmath}-180 \vec{k}$

Q6] b) A force of 5 KN is acting on the wedge as shown in fig. the coefficient of friction at all rubbing surfaces is 0.25 . find the load ' W ' which can be held in position. The weight of block ' B ' may be neglected.

Solution:-
Let N_{1}, N_{2}, N_{3}, be the normal reaction at the surface of contact

$\therefore F_{S 1}=\mu_{1} N_{1}=0.25 N_{1}, \quad F_{S 2}=\mu_{2} N_{2}=0.25 N_{2}, \quad F_{S 3}=\mu_{3} N_{3}=0.25 N_{3}$
Block A is impending to move towards right.
Since the block A is under equilibrium, $\sum F_{Y}=0$
$\therefore N_{3}-F_{S 2} \sin 45-N_{2} \cos 45=0$
$\therefore N_{3}-0.25 N_{2} \times 0.7071-N_{2} \times 7071=0$ \qquad (from 1)
$\therefore N_{3}-0.8839 N_{2}=0$ \qquad (2)

Also $\sum F_{X}=0$
$-5-F_{S 3}-F_{S 2} \cos 45+N_{2} \sin 45=0$
$\therefore-5-0.25 N_{3}-0.25 N_{2} \times 0.7071+N_{2} \times 0.7071=0$ \qquad (from 1)
$\therefore-0.25 N_{3}+0.5303 N_{2}=5$ \qquad (3)

Solving (2) and (3) simultaneously, we get $N_{3}=14.2876 \mathrm{kN}$ and $N_{2}=16.1642 \mathrm{kN}$ \qquad
Block B is impending to move down
Since the block B is under equilibrium, $\sum F_{X}=0$
$\therefore N_{1} \sin 60-F_{S 1} \cos 60+F_{S 2} \cos 45-N_{2} \sin 45=0$
$\therefore 0.866 N_{1}-0.25 N_{1} \times 0.5+0.25 N_{2} \times 0.7071-N_{2} \times 0.7071=0$.(from 1)
$\therefore 0.866 N_{1}-0.125 N_{1}+0.1768 \times 16.1642-16.1642 \times 0.7071=0$ \qquad .(from 4)
$\therefore 0.741 N_{1}-8.5719=0$
$N_{1}=11.4939 \mathrm{kN}$

Also $\sum F_{Y}=0$
$\therefore-W+N_{1} \cos 60+F_{S 1} \sin 60+F_{S 2} \sin 45+N_{2} \cos 45=0$
$\therefore N_{1} \times 0.5+0.25 N_{1} \times 0.866+0.25 N_{2} \times 0.7071+N_{2} \times 0.7071=W$ \qquad (from 1)
$\therefore 11.4939 \times 0.5+0.2165 \times 11.4939+0.1768 \times 16.1642+16.1642 \times 0.7071=W$..(from 4 and 5)
$\therefore \mathrm{W}=22.5225 \mathrm{kN}$
Hence a load of 22.5225 kN can be held in the position.

Q6] c) The stiffness of the spring is $600 \mathrm{~N} / \mathrm{m}$. find the force ' P ' required to maintain equilibrium such that $\theta=30^{\circ}$. The spring is unstretched when $\theta=60^{\circ}$.neglect weight of the rods. Use method of virtual work.

Solution:-

Principle of virtual work:-

ENGINEERING

If a body is in equilibrium the total virtual work of forces acting on the body is zero for any virtual displacement.
$\mathrm{K}=600 \mathrm{~N} / \mathrm{m}, \theta=30^{\circ}$

When $\theta=60^{\circ}$
$A M=A B \cos 60^{\circ}=0.2 \cos 60^{\circ}=0.1$ and $B M=A B \sin 60^{\circ}=0.2 \sin 60^{\circ}=0.1732 m$

Given, the spring is unstretched

Unstretched length of the spring $=A C=2 A M=0.2 m$

When $\theta=30^{\circ}$
$A M=A B \cos 30^{\circ}=0.2 \cos 30^{\circ}=0.1732$ and $B M=A B \sin 30^{\circ}=0.2 \sin 30^{\circ}=0.1 \mathrm{~m}$
$A C=2 A M=0.4 \cos 30^{\circ}=0.3464 m$

Extension in the spring $(x)=0.3464-0.2=0.1464 \mathrm{~m}$

Spring force $(F)=K x=600 \times 0.1464=87.8461 N$

Let rod AB have a small virtual angular displacement $\delta \theta$ in the clockwise direction

The new position of rods $A B^{\prime} \& B^{\prime} C^{\prime}$ is shown dotted
The reaction forces R_{A} and R_{B} are not active forces, so they do not perform any virtual work Let A be the origin and dotted line through A be the X-axis of the system

Consider,

Active forces	Co-ordinate of the point of action along the forces	Virtual displacement
$\mathrm{F}=87.8461$	X Co-ordinate of $\mathrm{C}=x_{C}=0.4 \cos \theta$	$\delta x_{C}=-0.4 \sin \theta \delta \theta$
P	Y Co-ordinate of $\mathrm{C}=y_{B}=0.2 \sin \theta$	$\delta y_{B}=0.2 \cos \theta \delta \theta$

By principle of virtual work, $\delta U=0$
$-\mathrm{F} \times \delta x_{c}-P \times \delta y_{B}=0$
$-87.8461 \times-0.4 \sin \theta \delta \theta-P \times 0.2 \cos \theta \delta \theta=0$

Dividing by $\delta \theta$ and put $\theta=30,35.1384 \sin 30^{\circ}-0.2 P \cos 30^{\circ}=0$
$\frac{35.1384 \sin 30^{\circ}}{0.2 \times \cos 30^{\circ}}=P$
$P=101.4359 \mathrm{~N}$
Hence, the force P required to maintain equilibrium $=101.4359 \mathrm{kN}$

Q6] d) Two masses are interconnected with the pulley system. Neglecting frictional effect of pulleys and cord, determine the acceleration of masses m_{1}, take $m_{1}=50 \mathrm{~kg}$ and $\boldsymbol{m}_{2}=$ 40kg.

Solution:-
$\boldsymbol{m}_{\mathbf{1}}=50 \mathrm{~kg}$ and $\boldsymbol{m}_{\mathbf{2}}=40 \mathrm{~kg}$
Let x_{1} and x_{2} be displacement of pulleys A and B respectively.

The string around the pulley is of constant length.
$k_{1}+x_{1}+k_{2}+x_{1}+k_{3}+x_{2}=\mathrm{L}$
$k_{1}+k_{2}+k_{3}+2 x_{1}=\mathrm{L}-x_{2}$
On differentiating w.r.t 't' we get $2 v_{1}=-v_{2}$
Where $\frac{d x}{d t}=v$ the velocities of the two pulleys again differentiating w.r.t we get
$2 a_{1}=a_{2}$
$a_{1}=\frac{1}{2} a_{2}$

Let T be the Tension in the cord

Applying Newton's $2^{\text {nd }}$ law,$\Sigma F_{Y}=m_{1} a_{1}$

2T- $50 \mathrm{~g}=50 \times(0.5) a_{2}$ \qquad from (1)
$2 T=50 \mathrm{~g}+25 a_{2}$.
$\mathrm{T}=25 \mathrm{~g}+12.5 a_{2}$.
(2) (dividing by 2)

Applying Newton's $2^{\text {nd }}$ law to 40 kg block
$\Sigma F_{Y}=m_{2} a_{2}$
$40 \mathrm{~g}-\mathrm{T}=40 a_{2}$
$40 g-\left(25 g+12.5 a_{2}\right)=40 a_{2} \ldots \ldots . .$. from (2)
$40 g-25 g-12.5 a_{2}=40 a_{2}$
$15 g=52.5 a_{2}$
$a_{2}=\frac{15 \mathrm{~g}}{52.5}=2.8029 \mathrm{~m} / \mathrm{s}^{2}$
Acceleration of the mass $m_{2}=2.8029 \mathrm{~m} / \mathrm{s}^{2}$

